Телекомунікаційні системи та мережі. Том 1. Структура й основні функції.  /  Зміст  /  Розділ 6. Методи доступу   /  Тема 6.6. Особливості використання просторово-поляризаційних параметрів при радіодоступі

Зміст:

6.6.3. Поляризація в задачах доступу

Особливе значення мають задачі доступу з використанням поляризаційних параметрів сигналів і антен. Поляризація визначається тією уявною фігурою, яку рисує кінець вектора напруженості електричного поля сигналу, що випромінюється відповідною антеною на площині, перпендикулярній напряму розповсюдження. Так, лінійна антена штирового типу випромінює лінійну поляризацію (горизонтальну, вертикальну або з нахилом). Можна за допомогою складніших антен створити кругову або еліптичну поляризацію.

Для будь-якої конкретної поляризації сигналу (лінійної, кругової, еліптичної) існує інша, ортогональна їй. Пари ортогональних поляризацій подано на рис. 6.6.8. Для цих пар виконується умова (6.1.1) або (6.1.2), але в площині поляризації. Слід мати на увазі, що для кожної конкретної поляризації існує лише одна ортогональна поляризація сигналу або ж антени.

Рис. 6.6.8. Різноманітні поляризаційні базиси ортогональних сигналів S1 та S2:
а — лінійний; б — круговий; в — еліптичний

Антена може бути узгоджена з сигналом за поляризацією і тоді виділяється максимальний прийнятий сигнал (погоджений за поляризацією прийом сигналів). Інший крайній випадок: сигнал може виявитися ортогональним по відношенню до поляризації антени (наприклад, антена горизонтально поляризована, а сигнал має вертикальну лінійну поляризацію).

У загальному випадку між поляризацією антени і сигналу утворюється деякий кут γ = 2γΠ. При цьому потужність прийнятого сигналу Pпр = Π·Sеф, на виході антени з ефективною площею Sеф залежить як від вказаного кута γΠ так і від ступеня поляризації цього сигналу mΠ:

(6.6.8)

З формули (6.6.8) випливає, що при неполяризованому, хаотично поляризованому сигналі, коли mΠ = 0, на виході антени рівень цього сигналу Pпр вих = 0,5Pпр і цей рівень не залежить від виду поляризації антени. Іншими словами: при будь-якій антені можна прийняти тільки половину рівня неполяризованого сигналу. В іншому крайньому випадку, коли сигнал повністю поляризований, при mΠ = 1 можна вибрати поляризацію антени так, що на виході антени буде виділена вся потужність сигналу (при , коли γΠ = 0). Тобто при γΠ = 0 маємо погоджений за поляризацією прийом. При цьому максимізується функція (6.20):

(6.6.9)

Очевидно, існують умови при інших значеннях wi за яких функція (6.6.8) набуває також і нульового значення:

(6.6.10)

Умова (6.6.10) характеризує наявність «нульових» поляризацій, ортогональних по відношенню до сигналів. Така ортогоналізація використовується при ослабленні завад, при їх поляризаційній режекції, при розгляді сигналів з ортогональними поляризаціями.

Окрім задач поляризаційного погодження з корисним сигналом (6.6.9) і поляризаційної режекції завад (6.6.10), поляризація використовується і при розв’язанні інших важливих завдань, до яких слід віднести:

  • задачі повторного використання частот, коли на двох ортогональних поляризаціях передаються незалежні інформаційні потоки, що дозволяє вдвічі збільшити продуктивність елементу доступу;
  • задачі поляризаційної модуляції і демодуляції сигналів, коли, наприклад, «1» передається вертикальною поляризацією, а «0» — горизонтальною. Таке рішення вельми конструктивне, оскільки процес модуляції здійснюється не в радіотракті передачі, а безпосередньо в антені;
  • задачі прийому при рознесенні за поляризацією. Така задача особливо ефективна в багатопроменевих радіоканалах типу каналів стільникового, транкінгового зв’язків. При цьому реалізувати цей рознесений прийом можна і в абонентській станції, оскільки за рахунок компактності двох ортогонально поляризованих антен, розміщених в одному електричному центрі, можна зберегти існуючі габарити самої мобільної станції;
  • задачі адаптивного за поляризацією прийому, коли наявні поляризаційні зміни параметрів сигналів або завад відповідно відстежуються поляризацією приймальної станції.

Останні задачі адаптивного прийому мають особливе значення. Розглянемо їх більш детально.